12 research outputs found

    Protocol for the Provision of Amplification

    Get PDF
    This Protocol addresses the provision of amplification (hereafter: \u27Amplification\u27) to infants and pre-school children who are receiving services from the Ontario Infant Hearing Program (IHP). Providing amplification includes the process of prescribing a hearing aid based on appropriate assessment information, verification that the specified acoustical performance targets have been achieved, fitting the device on the child, and evaluation of device effectiveness in daily life

    Protocol for the Provision of Amplification v 2023.01

    Get PDF
    This Protocol addresses the provision of amplification (hereafter: \u27Amplification\u27) to infants and children who are receiving services from the Ontario Infant Hearing Program (IHP). For the purposes of this protocol, providing amplification includes the processes of prescribing a hearing aid (air or bone conduction) and/or other hearing assistance technologies based on appropriate assessment information, verification that the specified acoustical performance targets have been achieved, fitting the device on the child, and ongoing evaluation of device effectiveness in daily life. Amplification within the IHP does not include the provision of cochlear implants

    Real-ear-to-coupler difference predictions as a function of age for two coupling procedures

    No full text
    The predicted real-ear-to-coupler difference (RECD) values currently used in pediatric hearing instrument prescription methods are based on 12-month age range categories and were derived from measures using standard acoustic immittance probe tips. Consequently, the purpose of this study was to develop normative RECD predicted values for foam/acoustic immittance tips and custom earmolds across the age continuum. To this end, RECD data were collected on 392 infants and children (141 with acoustic immittance tips, 251 with earmolds) to develop normative regression equations for use in deriving continuous age predictions of RECDs for foam/acoustic immittance tips and earmolds. Owing to the substantial between-subject variability observed in the data, the predictive equations of RECDs by age (in months) resulted in only gross estimates of RECD values (i.e., within +/- 4.4 dB for 95% of acoustic immittance tip measures; within +/- 5.4 dB in 95% of measures with custom earmolds) across frequency. Thus, it is concluded that the estimates derived from this study should not be used to replace the more precise individual RECD measurements. Relative to previously available normative RECD values for infants and young children, however, the estimates derived through this study provide somewhat more accurate predicted values for use under those circumstances for which individual RECD measurements cannot be made

    Using the real-ear-to-coupler difference within the American Academy of audiology pediatric amplification guideline: Protocols for applying and predicting earmold RECDs

    No full text
    Background: Real-ear-to-coupler difference (RECD) measurements are used for the purposes of estimating degree and configuration of hearing loss (in dB SPL ear canal) and predicting hearing aid output from coupler-based measures. Accurate measurements of hearing threshold, derivation of hearing aid fitting targets, and predictions of hearing aid output in the ear canal assume consistent matching of RECD coupling procedure (i.e., foam tip or earmold) with that used during assessment and in verification of the hearing aid fitting. When there is a mismatch between these coupling procedures, errors are introduced. Purpose: The goal of this study was to quantify the systematic difference in measured RECD values obtained when using a foam tip versus an earmold with various tube lengths. Assuming that systematic errors exist, the second goal was to investigate the use of a foam tip to earmold correction for the purposes of improving fitting accuracy when mismatched RECD coupling conditions occur (e.g., foam tip at assessment, earmold at verification). Study Sample: Eighteen adults and 17 children (age range: 3-127 mo) participated in this study. Data Collection and Analysis: Data were obtained using simulated ears of various volumes and earmold tubing lengths and from patients using their own earmolds. Derived RECD values based on simulated ear measurements were compared with RECD values obtained for adult and pediatric ears for foam tip and earmold coupling. Results: Results indicate that differences between foam tip and earmold RECDs are consistent across test ears for adults and children which support the development of a correction between foam tip and earmold couplings for RECDs that can be applied across individuals. Conclusions: The foam tip to earmold correction values developed in this study can be used to provide improved estimations of earmold RECDs. This may support better accuracy in acoustic transforms related to transforming thresholds and/or hearing aid coupler responses to ear canal sound pressure level for the purposes of fitting behind-the-ear hearing AIDS

    Fitting noise management signal processing applying the American Academy of audiology pediatric amplification guideline: Verification protocols

    No full text
    Background: Although guidelines for fitting hearing AIDS for children are well developed and have strong basis in evidence, specific protocols for fitting and verifying some technologies are not always available. One such technology is noise management in children\u27s hearing AIDS. Children are frequently in highlevel and/or noisy environments, and many options for noise management exist in modern hearing AIDS. Verification protocols are needed to define specific test signals and levels for use in clinical practice. Purpose: This work aims to (1) describe the variation in different brands of noise reduction processors in hearing AIDS and the verification of these processors and (2) determine whether these differences are perceived by 13 children who have hearing loss. Finally, we aimed to develop a verification protocol for use in pediatric clinical practice. Study Sample: A set of hearing AIDS was tested using both clinically available test systems and a reference system, so that the impacts of noise reduction signal processing in hearing AIDS could be characterized for speech in a variety of background noises. A second set of hearing AIDS was tested across a range of audiograms and across two clinical verification systems to characterize the variance in clinical verification measurements. Finally, a set of hearing aid recordings that varied by type of noise reduction was rated for sound quality by children with hearing loss. Results: Significant variation across makes and models of hearing AIDS was observed in both the speed of noise reduction activation and the magnitude of noise reduction. Reference measures indicate that noise-only testing may overestimate noise reduction magnitude compared to speech-in-noise testing. Variation across clinical test signals was also observed, indicating that some test signals may be more successful than others for characterization of hearing aid noise reduction. Children provided different sound quality ratings across hearing AIDS, and for one hearing aid rated the sound quality as higher with the noise reduction system activated. Conclusions: Implications for clinical verification systems may be that greater standardization and the use of speech-in-noise test signals may improve the quality and consistency of noise reduction verification cross clinics. A suggested clinical protocol for verification of noise management in children\u27s hearing AIDS is suggested
    corecore